EstimatorReport.inspection.impurity_decrease#
- EstimatorReport.inspection.impurity_decrease()[source]#
Retrieve the Mean Decrease in Impurity (MDI) of a tree-based model.
This method is available for estimators that expose a
feature_importances_attribute. See for examplesklearn.ensemble.GradientBoostingClassifier.inspections_. In particular, note that the MDI is computed at fit time, i.e. using the training data.- Returns:
ImpurityDecreaseDisplayThe feature importance display containing the mean decrease in impurity.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.ensemble import RandomForestClassifier >>> from skore import train_test_split >>> from skore import EstimatorReport >>> X, y = make_classification(n_features=5, random_state=42) >>> split_data = train_test_split(X=X, y=y, random_state=0, as_dict=True) >>> forest = RandomForestClassifier(n_estimators=5, random_state=0) >>> report = EstimatorReport(forest, **split_data) >>> display = report.inspection.impurity_decrease() >>> display.frame() feature importances 0 Feature #0 0.06... 1 Feature #1 0.19... 2 Feature #2 0.01... 3 Feature #3 0.69... 4 Feature #4 0.02...