Track your Data Science
skore is a Python library to
evaluate and get insights from your predictive models.
We structure and store your experiments so that you can easily retrieve them
later.
Reports for your Experiments
Create structured reports to quickly evaluate and inspect
your predictive models by using
EstimatorReport
or
CrossValidationReport
and even compare them by using
ComparisonReport.
Given, some data
df: (expand for full code)
from skrub.datasets import fetch_employee_salaries
dataset = fetch_employee_salaries()
df = dataset.X
y = dataset.y
df
import sklearn
import skore
import skrub
report_ridge = skore.CrossValidationReport(
skrub.tabular_pipeline(sklearn.linear_model.Ridge()), df, y
)
report_ridge.help()
â•───────────────── Tools to diagnose estimator Ridge ──────────────────╮ │ CrossValidationReport │ │ ├── .data │ │ │ └── .analyze(...) - Plot dataset statistics. │ │ ├── .metrics │ │ │ ├── .prediction_error(...) - Plot the prediction error. │ │ │ ├── .rmse(...) (↘︎) - Compute the RMSE. │ │ │ └── .summarize(...) - Summarize all metrics. │ │ ├── .feature_importance │ │ │ └── .coefficients(...) - Retrieve the coefficients. │ │ └── Attributes │ │ ├── .X - The data to fit. │ │ ├── .y - The target variable. │ │ └── .estimator - Estimator to train. │ │ │ │ Legend: │ │ (↗︎) higher is better (↘︎) lower is better │ ╰──────────────────────────────────────────────────────────────────────╯
Get Insights that Matter
Quickly generate beautiful visualizations with
display.plot()
error = report_hgbdt.metrics.prediction_error()
error.plot(kind="actual_vs_predicted")display.frame()
metric_summary = report_ridge.metrics.summarize(
aggregate=None
)
metric_summary.frame()Store and Retrieve your Reports
Store your reports by using
Project.
Retrieve the most important reports to revisit your insights or compare with
new experiments later.
project = skore.Project(name="adult_census_survey")
project.put("ridge", report_ridge)
project.put(
"hgbdt", CrossValidationReport(
skrub.tabular_pipeline("regressor", df, y)
)
)
project.summarize()
Our Community
The skore project is driven by Probabl together with a world-wide
community of contributors. Here we display a randomly selected group of 30
contributors.
Try it yourself!
Ready to write less code, focus on what matters, and store your experiments to
retrieve them later? Dive into skore now and be part of our growing
community!