CrossValidationReport.cache_predictions#
- CrossValidationReport.cache_predictions(response_methods='auto', n_jobs=None)[source]#
Cache the predictions for sub-estimators reports.
- Parameters:
- response_methods{“auto”, “predict”, “predict_proba”, “decision_function”}, default=”auto
The methods to use to compute the predictions.
- n_jobsint, default=None
The number of jobs to run in parallel. If
None
, we use then_jobs
parameter when initializingCrossValidationReport
.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import CrossValidationReport >>> X, y = load_breast_cancer(return_X_y=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = CrossValidationReport(classifier, X=X, y=y, cv_splitter=2) >>> report.cache_predictions() >>> report._cache {...}