EstimatorReport.feature_importance.mean_decrease_impurity#
- EstimatorReport.feature_importance.mean_decrease_impurity()[source]#
Retrieve the mean decrease impurity (MDI) of a tree-based model.
This method is available for estimators that expose a
feature_importances_
attribute. See for examplesklearn.ensemble.GradientBoostingClassifier.feature_importances_
. In particular, note that the MDI is computed at fit time, i.e. using the training data.Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.model_selection import train_test_split >>> from skore import EstimatorReport >>> X, y = make_classification(n_features=5, random_state=42) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) >>> forest = RandomForestClassifier(n_estimators=5, random_state=0) >>> report = EstimatorReport( ... forest, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> report.feature_importance.mean_decrease_impurity() Mean decrease impurity Feature #0 0.06... Feature #1 0.19... Feature #2 0.01... Feature #3 0.69... Feature #4 0.02...