ComparisonReport.cache_predictions#
- ComparisonReport.cache_predictions(response_methods='auto', n_jobs=None)[source]
Cache the predictions for sub-estimators reports.
- Parameters:
- response_methods{“auto”, “predict”, “predict_proba”, “decision_function”}, default=”auto
The methods to use to compute the predictions.
- n_jobsint, default=None
The number of jobs to run in parallel. If
None
, we use then_jobs
parameter when initializing the report.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> from skore import train_test_split >>> from skore import ComparisonReport, EstimatorReport >>> X, y = make_classification(random_state=42) >>> split_data = train_test_split(X=X, y=y, random_state=42, as_dict=True) >>> estimator_1 = LogisticRegression() >>> estimator_report_1 = EstimatorReport(estimator_1, **split_data) >>> estimator_2 = LogisticRegression(C=2) # Different regularization >>> estimator_report_2 = EstimatorReport(estimator_2, **split_data) >>> report = ComparisonReport([estimator_report_1, estimator_report_2]) >>> report.cache_predictions() >>> report._cache {...}