ComparisonReport.metrics.timings#
- ComparisonReport.metrics.timings()[source]#
Get all measured processing times related to the different estimators.
The index of the returned dataframe is the name of the processing time. When the estimators were not used to predict, no timings regarding the prediction will be present.
- Returns:
- pd.DataFrame
A dataframe with the processing times.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from skore import ComparisonReport, EstimatorReport >>> X, y = make_classification(random_state=42) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) >>> estimator_1 = LogisticRegression() >>> estimator_report_1 = EstimatorReport( ... estimator_1, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> estimator_2 = LogisticRegression(C=2) # Different regularization >>> estimator_report_2 = EstimatorReport( ... estimator_2, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> report = ComparisonReport( ... {"model1": estimator_report_1, "model2": estimator_report_2} ... ) >>> report.metrics.timings() model1 model2 Fit time ... ... >>> report.cache_predictions(response_methods=["predict"]) >>> report.metrics.timings() model1 model2 Fit time ... ... Predict time test ... ... Predict time train ... ...