CrossValidationReport.metrics.roc#
- CrossValidationReport.metrics.roc(*, data_source='test', X=None, y=None, pos_label=None)[source]#
Plot the ROC curve.
- Parameters:
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
“X_y” : use the provided
X
andy
to compute the metric.X : array-like of shape (n_samples, n_features), default=None
New data on which to compute the metric. By default, we use the validation set provided when creating the report.
- yarray-like of shape (n_samples,), default=None
New target on which to compute the metric. By default, we use the target provided when creating the report.
- pos_labelint, float, bool or str, default=None
The positive class.
- Returns:
- RocCurveDisplay
The ROC curve display.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import CrossValidationReport >>> X, y = load_breast_cancer(return_X_y=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = CrossValidationReport(classifier, X=X, y=y, cv_splitter=2) >>> display = report.metrics.roc() >>> display.plot(roc_curve_kwargs={"color": "tab:red"})