Report for a single estimator#

The class EstimatorReport provides a report allowing to inspect and evaluate a scikit-learn estimator in an interactive way. The functionalities of the report are accessible through accessors.

EstimatorReport(estimator, *[, fit, ...])

Report for a fitted estimator.

Methods

EstimatorReport.help()

Display available methods using rich.

EstimatorReport.cache_predictions([...])

Cache estimator's predictions.

EstimatorReport.clear_cache()

Clear the cache.

EstimatorReport.get_predictions(*, data_source)

Get estimator's predictions.

Accessors

EstimatorReport.feature_importance

Accessor for feature importance related operations.

EstimatorReport.metrics

Accessor for metrics-related operations.

Metrics#

The metrics accessor helps you to evaluate the statistical performance of your estimator.

EstimatorReport.metrics.help()

Display available methods using rich.

EstimatorReport.metrics.summarize(*[, ...])

Report a set of metrics for our estimator.

EstimatorReport.metrics.custom_metric(...[, ...])

Compute a custom metric.

EstimatorReport.metrics.timings()

Get all measured processing times related to the estimator.

EstimatorReport.metrics.accuracy(*[, ...])

Compute the accuracy score.

EstimatorReport.metrics.brier_score(*[, ...])

Compute the Brier score.

EstimatorReport.metrics.log_loss(*[, ...])

Compute the log loss.

EstimatorReport.metrics.precision(*[, ...])

Compute the precision score.

EstimatorReport.metrics.precision_recall(*)

Plot the precision-recall curve.

EstimatorReport.metrics.prediction_error(*)

Plot the prediction error of a regression model.

EstimatorReport.metrics.r2(*[, data_source, ...])

Compute the R² score.

EstimatorReport.metrics.recall(*[, ...])

Compute the recall score.

EstimatorReport.metrics.rmse(*[, ...])

Compute the root mean squared error.

EstimatorReport.metrics.roc(*[, ...])

Plot the ROC curve.

EstimatorReport.metrics.roc_auc(*[, ...])

Compute the ROC AUC score.

Feature importance#

The feature_importance accessor helps you to evaluate the importance of the features used to train your estimator.

EstimatorReport.feature_importance.help()

Display available methods using rich.

EstimatorReport.feature_importance.coefficients()

Retrieve the coefficients of a linear model, including the intercept.

EstimatorReport.feature_importance.mean_decrease_impurity()

Retrieve the mean decrease impurity (MDI) of a tree-based model.

EstimatorReport.feature_importance.permutation(*)

Report the permutation feature importance.