EstimatorReport.inspection.coefficients#

EstimatorReport.inspection.coefficients()[source]#

Retrieve the coefficients of a linear model, including the intercept.

Returns:
CoefficientsDisplay

The feature importance display containing model coefficients and intercept.

Examples

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import Ridge
>>> from skore import train_test_split
>>> from skore import EstimatorReport
>>> X, y = load_diabetes(return_X_y=True)
>>> split_data = train_test_split(X=X, y=y, shuffle=False, as_dict=True)
>>> regressor = Ridge()
>>> report = EstimatorReport(regressor, **split_data)
>>> display = report.inspection.coefficients()
>>> display.frame()
       feature  coefficients
0    Intercept      151.4...
1   Feature #0       30.6...
2   Feature #1      -69.8...
3   Feature #2      254.8...
4   Feature #3      168.3...
5   Feature #4       18.3...
6   Feature #5      -19.5...
7   Feature #6     -134.6...
8   Feature #7      117.2...
9   Feature #8      242.1...
10  Feature #9      113.2...
>>> display.plot() # shows plot