TableReportDisplay#
- class skore.TableReportDisplay(summary)[source]#
- Display reporting information about a given dataset. - This display summarizes the dataset and provides a way to visualize the distribution of its columns. - Parameters:
- summarydict
- The summary of the dataset, as returned by - summarize_dataframe.
 
- Attributes:
- ax_matplotlib axes
- The axes of the figure. 
- figure_matplotlib figure.
- The figure of the plot. 
 
 - Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import train_test_split >>> from skore import EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> split_data = train_test_split(X=X, y=y, random_state=0, as_dict=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport(classifier, **split_data) >>> display = report.data.analyze() >>> display.plot(kind="corr") - frame(*, kind='dataset')[source]#
- Get the data related to the table report. - Parameters:
- kind{‘dataset’, ‘top-associations’}
- The kind of data to return. 
 
- Returns:
- DataFrame
- The dataset used to create the table report. 
 
 
 - plot(*, x=None, y=None, hue=None, kind='dist', top_k_categories=20, scatterplot_kwargs=None, stripplot_kwargs=None, boxplot_kwargs=None, heatmap_kwargs=None, histplot_kwargs=None)[source]#
- Plot distribution or correlation of the columns from the dataset. - Parameters:
- xstr, default=None
- The name of the column to use for the x-axis of the plot. Mandatory when - kind='dist'.
- ystr, default=None
- The name of the column to use for the y-axis of the plot. Only used when - kind='dist'.
- huestr, default=None
- The name of the column to use for the color or hue axis of the plot. Only used when - kind='dist'.
- kind{‘dist’, ‘corr’}, default=’dist’
- The kind of plot drawn. - If - 'dist', plot a distribution parametrized by- x,- yand- hue. When only- xis defined, the distribution is 1d. When- yis also defined, the plot is the 2d. Finally, when the color is set using- hue, the distribution is 2d, with a color per data-point based on- hue. This mode handle both numeric and categorical columns.
- If - 'corr', plot Cramer’s V correlation among all columns. This option doesn’t take any- x,- yor- hueargument.
 
- top_k_categoriesint, default=20
- For categorical columns, the number of most frequent elements to display. Only used when - kind='dist'.
- scatterplot_kwargs: dict, default=None
- Keyword arguments to be passed to seaborn’s - seaborn.scatterplot()for rendering the distribution 2D plot, when both- xand- yare numeric.
- stripplot_kwargs: dict, default=None
- Keyword arguments to be passed to seaborn’s - searborn.stripplot()for rendering the distribution 2D plot, when either- xor- yis numeric, and the other is categorical. This plot is drawn on top of the boxplot.
- boxplot_kwargs: dict, default=None
- Keyword arguments to be passed to seaborn’s - seaborn.boxplot()for rendering the distribution 2D plot, when either- xor- yis numeric, and the other is categorical. This plot is drawn below the stripplot.
- heatmap_kwargs: dict, default=None
- Keyword arguments to be passed to seaborn’s - seaborn.heatmap()for rendering Cramer’s V correlation matrix, when- kind='corr'or when- kind='dist'and both- xand- yare categorical.
- histplot_kwargs: dict, default=None
- Keyword arguments to be passed to seaborn’s - seaborn.histplot()for rendering the distribution 1D plot, when only- xis provided.
 
 - Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import train_test_split >>> from skore import EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> split_data = train_test_split(X=X, y=y, random_state=0, as_dict=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport(classifier, **split_data) >>> display = report.data.analyze() >>> display.plot(kind="corr") 
 - set_style(**kwargs)[source]#
- Set the style parameters for the display. - Parameters:
- **kwargsdict
- Style parameters to set. Each parameter name should correspond to a a style attribute passed to the plot method of the display. 
 
- Returns:
- selfobject
- Returns the instance itself. 
 
- Raises:
- ValueError
- If a style parameter is unknown. 
 
 
 
