CrossValidationReport.metrics.timings#
- CrossValidationReport.metrics.timings(aggregate=('mean', 'std'))[source]#
- Get all measured processing times related to the estimator. - The index of the returned dataframe is the name of the processing time. When the estimators were not used to predict, no timings regarding the prediction will be present. - Parameters:
- aggregate{“mean”, “std”} or list of such str, default=None
- Function to aggregate the timings across the cross-validation splits. 
 
- Returns:
- pd.DataFrame
- A dataframe with the processing times. 
 
 - Examples - >>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(random_state=42) >>> estimator = LogisticRegression() >>> from skore import CrossValidationReport >>> report = CrossValidationReport(estimator, X=X, y=y, splitter=2) >>> report.metrics.timings() mean std Fit time (s) ... ... >>> report.cache_predictions(response_methods=["predict"]) >>> report.metrics.timings() mean std Fit time (s) ... ... Predict time test (s) ... ... Predict time train (s) ... ...