ComparisonReport.metrics.timings#
- ComparisonReport.metrics.timings(aggregate=('mean', 'std'))[source]#
- Get all measured processing times related to the different estimators. - The index of the returned dataframe is the name of the processing time. When the estimators were not used to predict, no timings regarding the prediction will be present. - Parameters:
- aggregate{“mean”, “std”}, list of such str or None, default=(“mean”, “std”)
- Function to aggregate the scores across the cross-validation splits. None will return the scores for each split. Ignored when comparison is between - EstimatorReportinstances
 
- Returns:
- pd.DataFrame
- A dataframe with the processing times. 
 
 - Examples - >>> from sklearn.datasets import make_classification >>> from skore import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from skore import ComparisonReport, EstimatorReport >>> X, y = make_classification(random_state=42) >>> split_data = train_test_split(X=X, y=y, random_state=42, as_dict=True) >>> estimator_1 = LogisticRegression() >>> estimator_report_1 = EstimatorReport(estimator_1, **split_data) >>> estimator_2 = LogisticRegression(C=2) # Different regularization >>> estimator_report_2 = EstimatorReport(estimator_2, **split_data) >>> report = ComparisonReport( ... {"model1": estimator_report_1, "model2": estimator_report_2} ... ) >>> report.metrics.timings() model1 model2 Fit time (s) ... ... >>> report.cache_predictions(response_methods=["predict"]) >>> report.metrics.timings() model1 model2 Fit time (s) ... ... Predict time test (s) ... ... Predict time train (s) ... ...