PrecisionRecallCurveDisplay#
- class skore.PrecisionRecallCurveDisplay(*, precision_recall, average_precision, pos_label, data_source, ml_task, report_type)[source]#
- Precision Recall visualization. - An instance of this class should be created by - EstimatorReport.metrics.precision_recall(). You should not create an instance of this class directly.- Parameters:
- precision_recallDataFrame
- The precision-recall curve data to display. The columns are - estimator_name
- split(may be null)
- label
- threshold
- precision
- recall.
 
- average_precisionDataFrame
- The average precision data to display. The columns are - estimator_name
- split(may be null)
- label
- average_precision.
 
- pos_labelint, float, bool, str or None
- The class considered as the positive class. If None, the class will not be shown in the legend. 
- data_source{“train”, “test”, “X_y”}
- The data source used to compute the precision recall curve. 
- ml_task{“binary-classification”, “multiclass-classification”}
- The machine learning task. 
- report_type{“comparison-cross-validation”, “comparison-estimator”, “cross-validation”, “estimator”}
- The type of report. 
 
- Attributes:
- ax_matplotlib axes or ndarray of axes
- The axes on which the precision-recall curve is plotted. 
- figure_matplotlib figure
- The figure on which the precision-recall curve is plotted. 
- lines_list of matplotlib lines
- The lines of the precision-recall curve. 
 
 - Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import train_test_split >>> from skore import EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> split_data = train_test_split(X=X, y=y, random_state=0, as_dict=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport(classifier, **split_data) >>> display = report.metrics.precision_recall() >>> display.plot(pr_curve_kwargs={"color": "tab:red"}) - frame(with_average_precision=False)[source]#
- Get the data used to create the precision-recall curve plot. - Parameters:
- with_average_precisionbool, default=False
- Whether to include the average precision column in the returned DataFrame. 
 
- Returns:
- DataFrame
- A DataFrame containing the precision-recall curve data with columns depending on the report type: - estimator_name: Name of the estimator (when comparing estimators)
- split: Cross-validation split ID (when doing cross-validation)
- label: Class label (for multiclass-classification)
- threshold: Decision threshold
- precision: Precision score at threshold
- recall: Recall score at threshold
- average_precision: average precision (when- with_average_precision=True)
 
 
 - Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import train_test_split, EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> split_data = train_test_split(X=X, y=y, random_state=0, as_dict=True) >>> clf = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport(clf, **split_data) >>> display = report.metrics.precision_recall() >>> df = display.frame() 
 - plot(*, estimator_name=None, pr_curve_kwargs=None, despine=True)[source]#
- Plot visualization. - Parameters:
- estimator_namestr, default=None
- Name of the estimator used to plot the precision-recall curve. If - None, we use the inferred name from the estimator.
- pr_curve_kwargsdict or list of dict, default=None
- Keyword arguments to be passed to matplotlib’s - plotfor rendering the precision-recall curve(s).
- despinebool, default=True
- Whether to remove the top and right spines from the plot. 
 
 - Notes - The average precision (cf. - average_precision_score()) in scikit-learn is computed without any interpolation. To be consistent with this metric, the precision-recall curve is plotted without any interpolation as well (step-wise style).- You can change this style by passing the keyword argument - drawstyle="default". However, the curve will not be strictly consistent with the reported average precision.- Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import train_test_split >>> from skore import EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> split_data = train_test_split(X=X, y=y, random_state=0, as_dict=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport(classifier, **split_data) >>> display = report.metrics.precision_recall() >>> display.plot(pr_curve_kwargs={"color": "tab:red"}) 
 - set_style(**kwargs)[source]#
- Set the style parameters for the display. - Parameters:
- **kwargsdict
- Style parameters to set. Each parameter name should correspond to a a style attribute passed to the plot method of the display. 
 
- Returns:
- selfobject
- Returns the instance itself. 
 
- Raises:
- ValueError
- If a style parameter is unknown.