EstimatorReport.get_predictions#
- EstimatorReport.get_predictions(*, data_source, response_method='predict', X=None, pos_label=<DEFAULT>)[source]
- Get estimator’s predictions. - This method has the advantage to reload from the cache if the predictions were already computed in a previous call. - Parameters:
- data_source{“test”, “train”, “X_y”}, default=”test”
- The data source to use. - “test” : use the test set provided when creating the report. 
- “train” : use the train set provided when creating the report. 
- “X_y” : use the provided - Xand- yto compute the predictions.
 
- response_method{“predict”, “predict_proba”, “decision_function”}, default=”predict”
- The response method to use to get the predictions. 
- Xarray-like of shape (n_samples, n_features), optional
- When - data_sourceis “X_y”, the input features on which to compute the response method.
- pos_labelint, float, bool, str or None, default=_DEFAULT
- The label to consider as the positive class when computing predictions in binary classification cases. By default, the positive class is set to the one provided when creating the report. If - None,- estimator_.classes_[1]is used as positive label.- When - pos_labelis equal to- estimator_.classes_[0], it will be equivalent to- estimator_.predict_proba(X)[:, 0]for- response_method="predict_proba"and- -estimator_.decision_function(X)for- response_method="decision_function".
 
- Returns:
- np.ndarray of shape (n_samples,) or (n_samples, n_classes)
- The predictions. 
 
- Raises:
- ValueError
- If the data source is invalid. 
 
 - Examples - >>> from sklearn.datasets import make_classification >>> from skore import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(random_state=42) >>> split_data = train_test_split(X=X, y=y, random_state=42, as_dict=True) >>> estimator = LogisticRegression() >>> from skore import EstimatorReport >>> report = EstimatorReport(estimator, **split_data) >>> predictions = report.get_predictions(data_source="test") >>> predictions.shape (25,)