API#

This page lists all the public functions and classes of the skore package.

Warning

This code is still in development. The API is subject to change.

Project#

These functions and classes are meant for managing a Project.

open([project_path, create, overwrite])

Open a project given a project name or path.

Project(item_repository, view_repository)

A collection of items arranged in views and stored in a storage.

Project.put(key, value, *[, note, display_as])

Add a key-value pair to the Project.

Project.get(key, *[, version, metadata])

Get the value associated to key from the Project.

Get assistance when developing ML/DS projects#

These functions and classes enhance scikit-learn’s ones.

train_test_split(*arrays[, X, y, test_size, ...])

Perform train-test-split of data.

Report for a single estimator#

The class EstimatorReport provides a report allowing to inspect and evaluate a scikit-learn estimator in an interactive way. The functionalities of the report are accessible through accessors.

EstimatorReport(estimator, *[, fit, ...])

Report for a fitted estimator.

EstimatorReport.help

Display available methods using rich.

EstimatorReport.metrics

Accessor for metrics-related operations.

Metrics#

The metrics accessor helps you to evaluate the statistical performance of your estimator. In addition, we provide a sub-accessor plot, to get the common performance metric representations.

EstimatorReport.metrics.help

Display available methods using rich.

EstimatorReport.metrics.report_metrics

Report a set of metrics for our estimator.

EstimatorReport.metrics.custom_metric

Compute a custom metric.

EstimatorReport.metrics.accuracy

Compute the accuracy score.

EstimatorReport.metrics.brier_score

Compute the Brier score.

EstimatorReport.metrics.log_loss

Compute the log loss.

EstimatorReport.metrics.precision

Compute the precision score.

EstimatorReport.metrics.r2

Compute the R² score.

EstimatorReport.metrics.recall

Compute the recall score.

EstimatorReport.metrics.rmse

Compute the root mean squared error.

EstimatorReport.metrics.roc_auc

Compute the ROC AUC score.

EstimatorReport.metrics.plot.help

Display available methods using rich.

EstimatorReport.metrics.plot.precision_recall

Plot the precision-recall curve.

EstimatorReport.metrics.plot.prediction_error

Plot the prediction error of a regression model.

EstimatorReport.metrics.plot.roc

Plot the ROC curve.

Cross-validation report for an estimator#

The class CrossValidationReport provides a report allowing to inspect and evaluate a scikit-learn estimator through cross-validation in an interactive way. The functionalities of the report are accessible through accessors.

CrossValidationReport(estimator, X[, y, ...])

Report for cross-validation results.

CrossValidationReport.help

Display available methods using rich.

CrossValidationReport.metrics

Accessor for metrics-related operations.

Metrics#

The metrics accessor helps you to evaluate the statistical performance of your estimator during a cross-validation. In addition, we provide a sub-accessor plot, to get the common performance metric representations.

CrossValidationReport.metrics.help

Display available methods using rich.

CrossValidationReport.metrics.report_metrics

Report a set of metrics for our estimator.

CrossValidationReport.metrics.custom_metric

Compute a custom metric.

CrossValidationReport.metrics.accuracy

Compute the accuracy score.

CrossValidationReport.metrics.brier_score

Compute the Brier score.

CrossValidationReport.metrics.log_loss

Compute the log loss.

CrossValidationReport.metrics.precision

Compute the precision score.

CrossValidationReport.metrics.r2

Compute the R² score.

CrossValidationReport.metrics.recall

Compute the recall score.

CrossValidationReport.metrics.rmse

Compute the root mean squared error.

CrossValidationReport.metrics.roc_auc

Compute the ROC AUC score.

CrossValidationReport.metrics.plot.help

Display available methods using rich.

CrossValidationReport.metrics.plot.precision_recall

Plot the precision-recall curve.

CrossValidationReport.metrics.plot.prediction_error

Plot the prediction error of a regression model.

CrossValidationReport.metrics.plot.roc

Plot the ROC curve.

Deprecated#

These functions and classes are deprecated.

CrossValidationReporter(*args, **kwargs)

Evaluate estimator by cross-validation and output UI-friendly object.