EstimatorReport.metrics.report_metrics#
- EstimatorReport.metrics.report_metrics(*, data_source='test', X=None, y=None, scoring=None, scoring_names=None, pos_label=None, scoring_kwargs=None)[source]#
Report a set of metrics for our estimator.
- Parameters:
- data_source{“test”, “train”, “X_y”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
“X_y” : use the provided
X
andy
to compute the metric.
- Xarray-like of shape (n_samples, n_features), default=None
New data on which to compute the metric. By default, we use the validation set provided when creating the report.
- yarray-like of shape (n_samples,), default=None
New target on which to compute the metric. By default, we use the target provided when creating the report.
- scoringlist of str, callable, or scorer, default=None
The metrics to report. You can get the possible list of string by calling
report.metrics.help()
. When passing a callable, it should take as argumentsy_true
,y_pred
as the two first arguments. Additional arguments can be passed as keyword arguments and will be forwarded withscoring_kwargs
. If the callable API is too restrictive (e.g. need to pass same parameter name with different values), you can use scikit-learn scorers as provided bysklearn.metrics.make_scorer()
.- scoring_nameslist of str, default=None
Used to overwrite the default scoring names in the report. It should be of the same length as the
scoring
parameter.- pos_labelint, float, bool or str, default=None
The positive class.
- scoring_kwargsdict, default=None
The keyword arguments to pass to the scoring functions.
- Returns:
- pd.DataFrame
The statistics for the metrics.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> from skore import EstimatorReport >>> X_train, X_test, y_train, y_test = train_test_split( ... *load_breast_cancer(return_X_y=True), random_state=0 ... ) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport( ... classifier, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> report.metrics.report_metrics(pos_label=1) Metric Precision (↗︎) Recall (↗︎) ROC AUC (↗︎) Brier score (↘︎) LogisticRegression 0.98... 0.93... 0.99... 0.03...