CrossValidationReport.metrics.report_metrics#
- CrossValidationReport.metrics.report_metrics(*, data_source='test', scoring=None, scoring_names=None, pos_label=None, scoring_kwargs=None, aggregate=None)[source]#
Report a set of metrics for our estimator.
- Parameters:
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
- scoringlist of str, callable, or scorer, default=None
The metrics to report. You can get the possible list of string by calling
report.metrics.help()
. When passing a callable, it should take as argumentsy_true
,y_pred
as the two first arguments. Additional arguments can be passed as keyword arguments and will be forwarded withscoring_kwargs
. If the callable API is too restrictive (e.g. need to pass same parameter name with different values), you can use scikit-learn scorers as provided bysklearn.metrics.make_scorer()
.- scoring_nameslist of str, default=None
Used to overwrite the default scoring names in the report. It should be of the same length as the
scoring
parameter.- pos_labelint, float, bool or str, default=None
The positive class.
- scoring_kwargsdict, default=None
The keyword arguments to pass to the scoring functions.
- aggregate{“mean”, “std”} or list of such str, default=None
Function to aggregate the scores across the cross-validation splits.
- Returns:
- pd.DataFrame
The statistics for the metrics.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import CrossValidationReport >>> X, y = load_breast_cancer(return_X_y=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = CrossValidationReport(classifier, X=X, y=y, cv_splitter=2) Processing cross-validation ... >>> report.metrics.report_metrics( ... scoring=["precision", "recall"], pos_label=1, aggregate=["mean", "std"] ... ) Compute metric for each split ... Metric Precision (↗︎) Recall (↗︎) LogisticRegression mean 0.94... 0.96... std 0.02... 0.02...