CrossValidationReport.metrics.plot.prediction_error#
- CrossValidationReport.metrics.plot.prediction_error(*, data_source='test', ax=None, kind='residual_vs_predicted', subsample=1000, random_state=None)[source]#
Plot the prediction error of a regression model.
Extra keyword arguments will be passed to matplotlib’s
plot
.- Parameters:
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- kind{“actual_vs_predicted”, “residual_vs_predicted”}, default=”residual_vs_predicted”
The type of plot to draw:
“actual_vs_predicted” draws the observed values (y-axis) vs. the predicted values (x-axis).
“residual_vs_predicted” draws the residuals, i.e. difference between observed and predicted values, (y-axis) vs. the predicted values (x-axis).
- subsamplefloat, int or None, default=1_000
Sampling the samples to be shown on the scatter plot. If
float
, it should be between 0 and 1 and represents the proportion of the original dataset. Ifint
, it represents the number of samples display on the scatter plot. IfNone
, no subsampling will be applied. by default, 1,000 samples or less will be displayed.- random_stateint, default=None
The random state to use for the subsampling.
- Returns:
- PredictionErrorDisplay
The prediction error display.
Examples
>>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from skore import CrossValidationReport >>> X, y = load_diabetes(return_X_y=True) >>> regressor = Ridge() >>> report = CrossValidationReport(regressor, X=X, y=y, cv_splitter=2) Processing cross-validation ... >>> display = report.metrics.plot.prediction_error( ... kind="actual_vs_predicted" ... ) Computing predictions for display ... >>> display.plot(line_kwargs={"color": "tab:red"})