EstimatorReport.metrics.brier_score#
- EstimatorReport.metrics.brier_score(*, data_source='test', X=None, y=None)[source]#
- Compute the Brier score. - Parameters:
- data_source{“test”, “train”, “X_y”}, default=”test”
- The data source to use. - “test” : use the test set provided when creating the report. 
- “train” : use the train set provided when creating the report. 
- “X_y” : use the provided - Xand- yto compute the metric.
 
- Xarray-like of shape (n_samples, n_features), default=None
- New data on which to compute the metric. By default, we use the validation set provided when creating the report. 
- yarray-like of shape (n_samples,), default=None
- New target on which to compute the metric. By default, we use the target provided when creating the report. 
 
- Returns:
- float
- The Brier score. 
 
 - Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> from skore import EstimatorReport >>> X_train, X_test, y_train, y_test = train_test_split( ... *load_breast_cancer(return_X_y=True), random_state=0 ... ) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = EstimatorReport( ... classifier, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> report.metrics.brier_score() 0.03...