CrossValidationReport.metrics.roc#
- CrossValidationReport.metrics.roc(*, data_source='test', X=None, y=None, pos_label=None)[source]#
- Plot the ROC curve. - Parameters:
- data_source{“test”, “train”}, default=”test”
- The data source to use. - “test” : use the test set provided when creating the report. 
- “train” : use the train set provided when creating the report. 
- “X_y” : use the provided - Xand- yto compute the metric.- X : array-like of shape (n_samples, n_features), default=None 
 - New data on which to compute the metric. By default, we use the validation set provided when creating the report. 
- yarray-like of shape (n_samples,), default=None
- New target on which to compute the metric. By default, we use the target provided when creating the report. 
- pos_labelint, float, bool or str, default=None
- The positive class. 
 
- Returns:
- RocCurveDisplay
- The ROC curve display. 
 
 - Examples - >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import CrossValidationReport >>> X, y = load_breast_cancer(return_X_y=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = CrossValidationReport(classifier, X=X, y=y, cv_splitter=2) >>> display = report.metrics.roc() >>> display.plot(roc_curve_kwargs={"color": "tab:red"})