CrossValidationReport.get_predictions#
- CrossValidationReport.get_predictions(*, data_source, response_method, X=None, pos_label=None)[source]#
- Get estimator’s predictions. - This method has the advantage to reload from the cache if the predictions were already computed in a previous call. - Parameters:
- data_source{“test”, “train”}, default=”test”
- The data source to use. - “test” : use the test set provided when creating the report. 
- “train” : use the train set provided when creating the report. 
- “X_y” : use the train set provided when creating the report and the target variable. 
 
- response_method{“predict”, “predict_proba”, “decision_function”}
- The response method to use. 
- Xarray-like of shape (n_samples, n_features), optional
- When - data_sourceis “X_y”, the input features on which to compute the response method.
- pos_labelint, float, bool or str, default=None
- The positive class when it comes to binary classification. When - response_method="predict_proba", it will select the column corresponding to the positive class. When- response_method="decision_function", it will negate the decision function if- pos_labelis different from- estimator.classes_[1].
 
- Returns:
- list of np.ndarray of shape (n_samples,) or (n_samples, n_classes)
- The predictions for each cross-validation split. 
 
- Raises:
- ValueError
- If the data source is invalid. 
 
 - Examples - >>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(random_state=42) >>> estimator = LogisticRegression() >>> from skore import CrossValidationReport >>> report = CrossValidationReport(estimator, X=X, y=y, cv_splitter=2) >>> predictions = report.get_predictions( ... data_source="test", response_method="predict" ... ) >>> print([split_predictions.shape for split_predictions in predictions]) [(50,), (50,)]