.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/getting_started/plot_quick_start.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_getting_started_plot_quick_start.py: .. _example_quick_start: =========== Quick start =========== .. GENERATED FROM PYTHON SOURCE LINES 10-14 Machine learning evaluation and diagnostics =========================================== Evaluate your model using skore's :class:`~skore.CrossValidationReport`: .. GENERATED FROM PYTHON SOURCE LINES 16-26 .. code-block:: Python from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from skore import CrossValidationReport X, y = make_classification(n_classes=2, n_samples=100_000, n_informative=4) clf = LogisticRegression() cv_report = CrossValidationReport(clf, X, y) .. GENERATED FROM PYTHON SOURCE LINES 27-29 Display the help tree to see all the insights that are available to you (skore detected that you are doing binary classification): .. GENERATED FROM PYTHON SOURCE LINES 31-33 .. code-block:: Python cv_report.help() .. rst-class:: sphx-glr-script-out .. code-block:: none ╭─────────────────── Tools to diagnose estimator LogisticRegression ───────────────────╮ │ CrossValidationReport │ │ ├── .metrics │ │ │ ├── .accuracy(...) (↗︎) - Compute the accuracy score. │ │ │ ├── .brier_score(...) (↘︎) - Compute the Brier score. │ │ │ ├── .log_loss(...) (↘︎) - Compute the log loss. │ │ │ ├── .precision(...) (↗︎) - Compute the precision score. │ │ │ ├── .precision_recall(...) - Plot the precision-recall curve. │ │ │ ├── .recall(...) (↗︎) - Compute the recall score. │ │ │ ├── .roc(...) - Plot the ROC curve. │ │ │ ├── .roc_auc(...) (↗︎) - Compute the ROC AUC score. │ │ │ ├── .timings(...) - Get all measured processing times related │ │ │ │ to the estimator. │ │ │ ├── .custom_metric(...) - Compute a custom metric. │ │ │ └── .report_metrics(...) - Report a set of metrics for our estimator. │ │ ├── .cache_predictions(...) - Cache the predictions for sub-estimators │ │ │ reports. │ │ ├── .clear_cache(...) - Clear the cache. │ │ ├── .get_predictions(...) - Get estimator's predictions. │ │ └── Attributes │ │ ├── .X - The data to fit │ │ ├── .y - The target variable to try to predict in │ │ │ the case of supervised learning │ │ ├── .estimator_ - The cloned or copied estimator │ │ ├── .estimator_name_ - The name of the estimator │ │ ├── .estimator_reports_ - The estimator reports for each split │ │ └── .n_jobs - Number of jobs to run in parallel │ │ │ │ │ │ Legend: │ │ (↗︎) higher is better (↘︎) lower is better │ ╰──────────────────────────────────────────────────────────────────────────────────────╯ .. GENERATED FROM PYTHON SOURCE LINES 34-35 Display the report metrics that was computed for you: .. GENERATED FROM PYTHON SOURCE LINES 37-40 .. code-block:: Python df_cv_report_metrics = cv_report.metrics.report_metrics(pos_label=1) df_cv_report_metrics .. raw:: html
LogisticRegression
mean std
Metric
Precision 0.866950 0.001279
Recall 0.893577 0.003474
ROC AUC 0.942389 0.001236
Brier score 0.090748 0.000894
Fit time 0.181586 0.028864
Predict time 0.001423 0.001392


.. GENERATED FROM PYTHON SOURCE LINES 41-42 Display the ROC curve that was generated for you: .. GENERATED FROM PYTHON SOURCE LINES 44-47 .. code-block:: Python roc_plot = cv_report.metrics.roc() roc_plot.plot() .. image-sg:: /auto_examples/getting_started/images/sphx_glr_plot_quick_start_001.png :alt: plot quick start :srcset: /auto_examples/getting_started/images/sphx_glr_plot_quick_start_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 48-50 Skore project: storing some items ================================= .. GENERATED FROM PYTHON SOURCE LINES 52-53 From your Python code, create and load a skore :class:`~skore.Project`: .. GENERATED FROM PYTHON SOURCE LINES 55-59 .. code-block:: Python import skore my_project = skore.Project("my_project") .. GENERATED FROM PYTHON SOURCE LINES 69-71 This will create a skore project directory named ``my_project.skore`` in your current working directory. .. GENERATED FROM PYTHON SOURCE LINES 73-74 Store some previous results in the skore project for safe-keeping: .. GENERATED FROM PYTHON SOURCE LINES 76-79 .. code-block:: Python my_project.put("df_cv_report_metrics", df_cv_report_metrics) my_project.put("roc_plot", roc_plot) .. GENERATED FROM PYTHON SOURCE LINES 80-81 Retrieve what was stored: .. GENERATED FROM PYTHON SOURCE LINES 83-86 .. code-block:: Python df_get = my_project.get("df_cv_report_metrics") df_get .. raw:: html
(LogisticRegression, mean) (LogisticRegression, std)
Metric
Precision 0.866950 0.001279
Recall 0.893577 0.003474
ROC AUC 0.942389 0.001236
Brier score 0.090748 0.000894
Fit time 0.181586 0.028864
Predict time 0.001423 0.001392


.. GENERATED FROM PYTHON SOURCE LINES 90-93 .. seealso:: For a more in-depth guide, see our :ref:`example_skore_getting_started` page! .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.866 seconds) .. _sphx_glr_download_auto_examples_getting_started_plot_quick_start.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_quick_start.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_quick_start.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_quick_start.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_