.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/use_cases/plot_employee_salaries.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_use_cases_plot_employee_salaries.py: .. _example_use_case_employee_salaries: =============================== Simplified experiment reporting =============================== This example shows how to leverage skore for reporting model evaluation and storing the results for further analysis. .. GENERATED FROM PYTHON SOURCE LINES 13-15 We set some environment variables to avoid some spurious warnings related to parallelism. .. GENERATED FROM PYTHON SOURCE LINES 16-21 .. code-block:: Python import os os.environ["POLARS_ALLOW_FORKING_THREAD"] = "1" os.environ["TOKENIZERS_PARALLELISM"] = "true" .. GENERATED FROM PYTHON SOURCE LINES 22-24 Creating a skore project and loading some data ============================================== .. GENERATED FROM PYTHON SOURCE LINES 26-27 We use a skrub dataset that is non-trivial. .. GENERATED FROM PYTHON SOURCE LINES 28-33 .. code-block:: Python from skrub.datasets import fetch_employee_salaries datasets = fetch_employee_salaries() df, y = datasets.X, datasets.y .. GENERATED FROM PYTHON SOURCE LINES 34-36 Let's first have a condensed summary of the input data using a :class:`skrub.TableReport`. .. GENERATED FROM PYTHON SOURCE LINES 37-42 .. code-block:: Python from skrub import TableReport table_report = TableReport(df) table_report .. raw:: html

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



.. GENERATED FROM PYTHON SOURCE LINES 43-63 From the table report, we can make a few observations: * The type of data is heterogeneous: we mainly have categorical and date-related features. * The year related to the ``date_first_hired`` column is also present in the ``date`` column. Hence, we should beware of not creating twice the same feature during the feature engineering. * By looking at the "Associations" tab of the table report, we observe that two features are holding the exact same information: ``department`` and ``department_name``. Hence, during our feature engineering, we could potentially drop one of them if the final predictive model is sensitive to the collinearity. * When looking at the "Stats" tab, we observe that the ``division`` and ``employee_position_title`` are two features containing a large number of categories. It is something that we should consider in our feature engineering. .. GENERATED FROM PYTHON SOURCE LINES 65-68 In terms of target and thus the task that we want to solve, we are interested in predicting the salary of an employee given the previous features. We therefore have a regression task at end. .. GENERATED FROM PYTHON SOURCE LINES 69-71 .. code-block:: Python y .. rst-class:: sphx-glr-script-out .. code-block:: none 0 69222.18 1 97392.47 2 104717.28 3 52734.57 4 93396.00 ... 9223 72094.53 9224 169543.85 9225 102736.52 9226 153747.50 9227 75484.08 Name: current_annual_salary, Length: 9228, dtype: float64 .. GENERATED FROM PYTHON SOURCE LINES 72-74 Tree-based model ================ .. GENERATED FROM PYTHON SOURCE LINES 76-88 Let's start by creating a tree-based model using some out-of-the-box tools. For feature engineering we use skrub's :class:`~skrub.TableVectorizer`. To deal with the high cardinality of the categorical features, we use a :class:`~skrub.TextEncoder` that uses a language model and an embedding model to encode the categorical features. Finally, we use a :class:`~sklearn.ensemble.HistGradientBoostingRegressor` as a base estimator that is a rather robust model. Modelling ^^^^^^^^^ .. GENERATED FROM PYTHON SOURCE LINES 88-99 .. code-block:: Python from skrub import TableVectorizer, TextEncoder from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.pipeline import make_pipeline model = make_pipeline( TableVectorizer(high_cardinality=TextEncoder(store_weights_in_pickle=True)), HistGradientBoostingRegressor(), ) model .. raw:: html
Pipeline(steps=[('tablevectorizer',
                     TableVectorizer(high_cardinality=TextEncoder(store_weights_in_pickle=True))),
                    ('histgradientboostingregressor',
                     HistGradientBoostingRegressor())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


.. GENERATED FROM PYTHON SOURCE LINES 100-105 Evaluation ^^^^^^^^^^ Let us compute the cross-validation report for this model using :class:`skore.CrossValidationReport`: .. GENERATED FROM PYTHON SOURCE LINES 105-112 .. code-block:: Python from skore import CrossValidationReport hgbt_model_report = CrossValidationReport( estimator=model, X=df, y=y, cv_splitter=5, n_jobs=4 ) hgbt_model_report.help() .. rst-class:: sphx-glr-script-out .. code-block:: none ╭───────────── Tools to diagnose estimator HistGradientBoostingRegressor ──────────────╮ │ CrossValidationReport │ │ ├── .metrics │ │ │ ├── .prediction_error(...) - Plot the prediction error of a regression │ │ │ │ model. │ │ │ ├── .r2(...) (↗︎) - Compute the R² score. │ │ │ ├── .rmse(...) (↘︎) - Compute the root mean squared error. │ │ │ ├── .timings(...) - Get all measured processing times related │ │ │ │ to the estimator. │ │ │ ├── .custom_metric(...) - Compute a custom metric. │ │ │ └── .report_metrics(...) - Report a set of metrics for our estimator. │ │ ├── .cache_predictions(...) - Cache the predictions for sub-estimators │ │ │ reports. │ │ ├── .clear_cache(...) - Clear the cache. │ │ ├── .get_predictions(...) - Get estimator's predictions. │ │ └── Attributes │ │ ├── .X - The data to fit │ │ ├── .y - The target variable to try to predict in │ │ │ the case of supervised learning │ │ ├── .estimator_ - The cloned or copied estimator │ │ ├── .estimator_name_ - The name of the estimator │ │ ├── .estimator_reports_ - The estimator reports for each split │ │ └── .n_jobs - Number of jobs to run in parallel │ │ │ │ │ │ Legend: │ │ (↗︎) higher is better (↘︎) lower is better │ ╰──────────────────────────────────────────────────────────────────────────────────────╯ .. GENERATED FROM PYTHON SOURCE LINES 113-114 We cache the predictions for later use. .. GENERATED FROM PYTHON SOURCE LINES 115-117 .. code-block:: Python hgbt_model_report.cache_predictions(n_jobs=4) .. GENERATED FROM PYTHON SOURCE LINES 118-119 We can now have a look at the performance of the model with some standard metrics. .. GENERATED FROM PYTHON SOURCE LINES 120-123 .. code-block:: Python hgbt_model_report.metrics.report_metrics() .. raw:: html
HistGradientBoostingRegressor
mean std
Metric
0.925649 0.015026
RMSE 7925.022613 1086.872675
Fit time (s) 16.944691 5.047319
Predict time (s) 3.920310 0.070597


.. GENERATED FROM PYTHON SOURCE LINES 124-131 Linear model ============ Now that we have established a first model that serves as a baseline, we shall proceed to define a quite complex linear model (a pipeline with a complex feature engineering that uses a linear model as the base estimator). .. GENERATED FROM PYTHON SOURCE LINES 133-135 Modelling ^^^^^^^^^ .. GENERATED FROM PYTHON SOURCE LINES 135-184 .. code-block:: Python import numpy as np from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OneHotEncoder, SplineTransformer from sklearn.linear_model import RidgeCV from skrub import DatetimeEncoder, ToDatetime, DropCols, GapEncoder def periodic_spline_transformer(period, n_splines=None, degree=3): if n_splines is None: n_splines = period n_knots = n_splines + 1 # periodic and include_bias is True return SplineTransformer( degree=degree, n_knots=n_knots, knots=np.linspace(0, period, n_knots).reshape(n_knots, 1), extrapolation="periodic", include_bias=True, ) one_hot_features = ["gender", "department_name", "assignment_category"] datetime_features = "date_first_hired" date_encoder = make_pipeline( ToDatetime(), DatetimeEncoder(resolution="day", add_weekday=True, add_total_seconds=False), DropCols("date_first_hired_year"), ) date_engineering = make_column_transformer( (periodic_spline_transformer(12, n_splines=6), ["date_first_hired_month"]), (periodic_spline_transformer(31, n_splines=15), ["date_first_hired_day"]), (periodic_spline_transformer(7, n_splines=3), ["date_first_hired_weekday"]), ) feature_engineering_date = make_pipeline(date_encoder, date_engineering) preprocessing = make_column_transformer( (feature_engineering_date, datetime_features), (OneHotEncoder(drop="if_binary", handle_unknown="ignore"), one_hot_features), (GapEncoder(n_components=100), "division"), (GapEncoder(n_components=100), "employee_position_title"), ) model = make_pipeline(preprocessing, RidgeCV(alphas=np.logspace(-3, 3, 100))) model .. raw:: html
Pipeline(steps=[('columntransformer',
                     ColumnTransformer(transformers=[('pipeline',
                                                      Pipeline(steps=[('pipeline',
                                                                       Pipeline(steps=[('todatetime',
                                                                                        ToDatetime()),
                                                                                       ('datetimeencoder',
                                                                                        DatetimeEncoder(add_total_seconds=False,
                                                                                                        add_weekday=True,
                                                                                                        resolution='day')),
                                                                                       ('dropcols',
                                                                                        DropCols(cols='date_first_hired_year'))])),
                                                                      ('columntransformer',
                                                                       ColumnTransformer(transfor...
           4.03701726e+01, 4.64158883e+01, 5.33669923e+01, 6.13590727e+01,
           7.05480231e+01, 8.11130831e+01, 9.32603347e+01, 1.07226722e+02,
           1.23284674e+02, 1.41747416e+02, 1.62975083e+02, 1.87381742e+02,
           2.15443469e+02, 2.47707636e+02, 2.84803587e+02, 3.27454916e+02,
           3.76493581e+02, 4.32876128e+02, 4.97702356e+02, 5.72236766e+02,
           6.57933225e+02, 7.56463328e+02, 8.69749003e+02, 1.00000000e+03])))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


.. GENERATED FROM PYTHON SOURCE LINES 185-197 In the diagram above, we can see what how we performed our feature engineering: * For categorical features, we use two approaches: if the number of categories is relatively small, we use a `OneHotEncoder` and if the number of categories is large, we use a `GapEncoder` that was designed to deal with high cardinality categorical features. * Then, we have another transformation to encode the date features. We first split the date into multiple features (day, month, and year). Then, we apply a periodic spline transformation to each of the date features to capture the periodicity of the data. * Finally, we fit a :class:`~sklearn.linear_model.RidgeCV` model. .. GENERATED FROM PYTHON SOURCE LINES 199-205 Evaluation ^^^^^^^^^^ Now, we want to evaluate this linear model via cross-validation (with 5 folds). For that, we use skore's :class:`~skore.CrossValidationReport` to investigate the performance of our model. .. GENERATED FROM PYTHON SOURCE LINES 205-210 .. code-block:: Python linear_model_report = CrossValidationReport( estimator=model, X=df, y=y, cv_splitter=5, n_jobs=4 ) linear_model_report.help() .. rst-class:: sphx-glr-script-out .. code-block:: none ╭──────────────────────── Tools to diagnose estimator RidgeCV ─────────────────────────╮ │ CrossValidationReport │ │ ├── .metrics │ │ │ ├── .prediction_error(...) - Plot the prediction error of a regression │ │ │ │ model. │ │ │ ├── .r2(...) (↗︎) - Compute the R² score. │ │ │ ├── .rmse(...) (↘︎) - Compute the root mean squared error. │ │ │ ├── .timings(...) - Get all measured processing times related │ │ │ │ to the estimator. │ │ │ ├── .custom_metric(...) - Compute a custom metric. │ │ │ └── .report_metrics(...) - Report a set of metrics for our estimator. │ │ ├── .cache_predictions(...) - Cache the predictions for sub-estimators │ │ │ reports. │ │ ├── .clear_cache(...) - Clear the cache. │ │ ├── .get_predictions(...) - Get estimator's predictions. │ │ └── Attributes │ │ ├── .X - The data to fit │ │ ├── .y - The target variable to try to predict in │ │ │ the case of supervised learning │ │ ├── .estimator_ - The cloned or copied estimator │ │ ├── .estimator_name_ - The name of the estimator │ │ ├── .estimator_reports_ - The estimator reports for each split │ │ └── .n_jobs - Number of jobs to run in parallel │ │ │ │ │ │ Legend: │ │ (↗︎) higher is better (↘︎) lower is better │ ╰──────────────────────────────────────────────────────────────────────────────────────╯ .. GENERATED FROM PYTHON SOURCE LINES 211-219 We observe that the cross-validation report detected that we have a regression task and provides us with some metrics and plots that make sense for our specific problem at hand. To accelerate any future computation (e.g. of a metric), we cache once and for all the predictions of our model. Note that we do not necessarily need to cache the predictions as the report will compute them on the fly (if not cached) and cache them for us. .. GENERATED FROM PYTHON SOURCE LINES 221-227 .. code-block:: Python import warnings with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=FutureWarning) linear_model_report.cache_predictions(n_jobs=4) .. GENERATED FROM PYTHON SOURCE LINES 228-229 We can now have a look at the performance of the model with some standard metrics. .. GENERATED FROM PYTHON SOURCE LINES 229-231 .. code-block:: Python linear_model_report.metrics.report_metrics(indicator_favorability=True) .. raw:: html
RidgeCV Favorability
mean std
Metric
0.765235 0.026285 (↗︎)
RMSE 14101.877353 1296.358527 (↘︎)
Fit time (s) 10.561703 2.203130 (↘︎)
Predict time (s) 1.196270 0.068071 (↘︎)


.. GENERATED FROM PYTHON SOURCE LINES 232-237 Comparing the models ==================== Now that we cross-validated our models, we can make some further comparison using the :class:`skore.ComparisonReport`: .. GENERATED FROM PYTHON SOURCE LINES 239-244 .. code-block:: Python from skore import ComparisonReport comparator = ComparisonReport([hgbt_model_report, linear_model_report]) comparator.metrics.report_metrics(indicator_favorability=True) .. raw:: html
mean std Favorability
Estimator HistGradientBoostingRegressor RidgeCV HistGradientBoostingRegressor RidgeCV
Metric
0.925649 0.765235 0.015026 0.026285 (↗︎)
RMSE 7925.022613 14101.877353 1086.872675 1296.358527 (↘︎)
Fit time (s) 16.944691 10.561703 5.047319 2.203130 (↘︎)
Predict time (s) 3.920310 1.196270 0.070597 0.068071 (↘︎)


.. GENERATED FROM PYTHON SOURCE LINES 245-250 In addition, if we forgot to compute a specific metric (e.g. :func:`~sklearn.metrics.mean_absolute_error`), we can easily add it to the report, without re-training the model and even without re-computing the predictions since they are cached internally in the report. This allows us to save some potentially huge computation time. .. GENERATED FROM PYTHON SOURCE LINES 252-264 .. code-block:: Python from sklearn.metrics import mean_absolute_error scoring = ["r2", "rmse", mean_absolute_error] scoring_kwargs = {"response_method": "predict"} scoring_names = ["R²", "RMSE", "MAE"] comparator.metrics.report_metrics( scoring=scoring, scoring_kwargs=scoring_kwargs, scoring_names=scoring_names, ) .. raw:: html
mean std
Estimator HistGradientBoostingRegressor RidgeCV HistGradientBoostingRegressor RidgeCV
Metric
0.925649 0.765235 0.015026 0.026285
RMSE 7925.022613 14101.877353 1086.872675 1296.358527
MAE 4407.990704 9890.448664 185.681370 563.193172


.. GENERATED FROM PYTHON SOURCE LINES 265-268 Finally, we can even get the individual :class:`~skore.EstimatorReport` for each fold from the cross-validation to make further analysis. Here, we plot the actual vs predicted values for each fold. .. GENERATED FROM PYTHON SOURCE LINES 268-283 .. code-block:: Python from itertools import zip_longest import matplotlib.pyplot as plt fig, axs = plt.subplots(ncols=2, nrows=3, figsize=(12, 18)) for split_idx, (ax, estimator_report) in enumerate( zip_longest(axs.flatten(), linear_model_report.estimator_reports_) ): if estimator_report is None: ax.axis("off") continue estimator_report.metrics.prediction_error().plot(kind="actual_vs_predicted", ax=ax) ax.set_title(f"Split #{split_idx + 1}") ax.legend(loc="lower right") plt.tight_layout() .. image-sg:: /auto_examples/use_cases/images/sphx_glr_plot_employee_salaries_001.png :alt: Split #1, Split #2, Split #3, Split #4, Split #5 :srcset: /auto_examples/use_cases/images/sphx_glr_plot_employee_salaries_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (1 minutes 28.467 seconds) .. _sphx_glr_download_auto_examples_use_cases_plot_employee_salaries.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_employee_salaries.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_employee_salaries.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_employee_salaries.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_