ComparisonReport#
- class skore.ComparisonReport(reports, *, n_jobs=None)[source]#
Report for comparison of instances of
skore.EstimatorReport.Caution: reports passed to
ComparisonReportare not copied. If you pass a report toComparisonReport, and then modify the report outside later, it will affect the report stored inside theComparisonReportas well, which can lead to inconsistent results. For this reason, modifying reports after creation is strongly discouraged.- Parameters:
- reportslist of
EstimatorReportinstances or dict Estimator reports to compare.
If
reportsis a list, the class name of each estimator is used.If
reportsis a dict, it is expected to have estimator names as keys andEstimatorReportinstances as values. If the keys are not strings, they will be converted to strings.
- n_jobsint, default=None
Number of jobs to run in parallel. Training the estimators and computing the scores are parallelized. When accessing some methods of the
ComparisonReport, then_jobsparameter is used to parallelize the computation.Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors.
- reportslist of
- Attributes:
- estimator_reports_list of
~skore.EstimatorReport The compared estimator reports.
- report_names_list of str
The names of the compared estimator reports.
- estimator_reports_list of
See also
skore.EstimatorReportReport for a fitted estimator.
skore.CrossValidationReportReport for the cross-validation of an estimator.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from skore import ComparisonReport, EstimatorReport >>> X, y = make_classification(random_state=42) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) >>> estimator_1 = LogisticRegression() >>> estimator_report_1 = EstimatorReport( ... estimator_1, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> estimator_2 = LogisticRegression(C=2) # Different regularization >>> estimator_report_2 = EstimatorReport( ... estimator_2, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> report = ComparisonReport([estimator_report_1, estimator_report_2]) ... >>> report = ComparisonReport( ... {"model1": estimator_report_1, "model2": estimator_report_2} ... ) ...
- cache_predictions(response_methods='auto', n_jobs=None)[source]#
Cache the predictions for sub-estimators reports.
- Parameters:
- response_methods{“auto”, “predict”, “predict_proba”, “decision_function”}, default=”auto
The methods to use to compute the predictions.
- n_jobsint, default=None
The number of jobs to run in parallel. If
None, we use then_jobsparameter when initializing the report.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> from skore import ComparisonReport >>> X, y = make_classification(random_state=42) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) >>> estimator_1 = LogisticRegression() >>> estimator_report_1 = EstimatorReport( ... estimator_1, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> estimator_2 = LogisticRegression(C=2) # Different regularization >>> estimator_report_2 = EstimatorReport( ... estimator_2, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> report = ComparisonReport([estimator_report_1, estimator_report_2]) >>> report.cache_predictions() >>> report._cache {...}
- clear_cache()[source]#
Clear the cache.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> from skore import ComparisonReport >>> X, y = make_classification(random_state=42) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) >>> estimator_1 = LogisticRegression() >>> estimator_report_1 = EstimatorReport( ... estimator_1, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> estimator_2 = LogisticRegression(C=2) # Different regularization >>> estimator_report_2 = EstimatorReport( ... estimator_2, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test ... ) >>> report = ComparisonReport([estimator_report_1, estimator_report_2]) >>> report.cache_predictions() >>> report.clear_cache() >>> report._cache {}