.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/getting_started/plot_quick_start.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_getting_started_plot_quick_start.py: .. _example_quick_start: =========== Quick start =========== .. GENERATED FROM PYTHON SOURCE LINES 10-14 Machine learning evaluation and diagnostics =========================================== Evaluate your model using skore's :class:`~skore.CrossValidationReport`: .. GENERATED FROM PYTHON SOURCE LINES 16-26 .. code-block:: Python from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from skore import CrossValidationReport X, y = make_classification(n_classes=2, n_samples=100_000, n_informative=4) clf = LogisticRegression() cv_report = CrossValidationReport(clf, X, y) .. GENERATED FROM PYTHON SOURCE LINES 27-29 Display the help tree to see all the insights that are available to you (skore detected that you are doing binary classification): .. GENERATED FROM PYTHON SOURCE LINES 31-33 .. code-block:: Python cv_report.help() .. rst-class:: sphx-glr-script-out .. code-block:: none ╭─────────────────── Tools to diagnose estimator LogisticRegression ───────────────────╮ │ CrossValidationReport │ │ ├── .metrics │ │ │ ├── .accuracy(...) (↗︎) - Compute the accuracy score. │ │ │ ├── .brier_score(...) (↘︎) - Compute the Brier score. │ │ │ ├── .log_loss(...) (↘︎) - Compute the log loss. │ │ │ ├── .precision(...) (↗︎) - Compute the precision score. │ │ │ ├── .precision_recall(...) - Plot the precision-recall curve. │ │ │ ├── .recall(...) (↗︎) - Compute the recall score. │ │ │ ├── .roc(...) - Plot the ROC curve. │ │ │ ├── .roc_auc(...) (↗︎) - Compute the ROC AUC score. │ │ │ ├── .custom_metric(...) - Compute a custom metric. │ │ │ └── .report_metrics(...) - Report a set of metrics for our estimator. │ │ ├── .cache_predictions(...) - Cache the predictions for sub-estimators │ │ │ reports. │ │ ├── .clear_cache(...) - Clear the cache. │ │ └── Attributes │ │ ├── .X │ │ ├── .y │ │ ├── .estimator_ │ │ ├── .estimator_name_ │ │ ├── .estimator_reports_ │ │ └── .n_jobs │ │ │ │ │ │ Legend: │ │ (↗︎) higher is better (↘︎) lower is better │ ╰──────────────────────────────────────────────────────────────────────────────────────╯ .. GENERATED FROM PYTHON SOURCE LINES 34-35 Display the report metrics that was computed for you: .. GENERATED FROM PYTHON SOURCE LINES 37-40 .. code-block:: Python df_cv_report_metrics = cv_report.metrics.report_metrics() df_cv_report_metrics .. raw:: html
LogisticRegression
Split #0 Split #1 Split #2 Split #3 Split #4
Metric Label / Average
Precision 0 0.746546 0.744155 0.740818 0.751271 0.747534
1 0.719169 0.728469 0.723992 0.724621 0.725310
Recall 0 0.702570 0.719372 0.714000 0.709200 0.712400
1 0.761524 0.752725 0.750200 0.765200 0.759400
ROC AUC 0.800497 0.798113 0.798477 0.802839 0.801416
Brier score 0.181144 0.182536 0.182259 0.180057 0.181266


.. GENERATED FROM PYTHON SOURCE LINES 41-42 Display the ROC curve that was generated for you: .. GENERATED FROM PYTHON SOURCE LINES 44-50 .. code-block:: Python import matplotlib.pyplot as plt roc_plot = cv_report.metrics.roc() roc_plot.plot() plt.tight_layout() .. image-sg:: /auto_examples/getting_started/images/sphx_glr_plot_quick_start_001.png :alt: plot quick start :srcset: /auto_examples/getting_started/images/sphx_glr_plot_quick_start_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 51-53 Skore project: storing some items ================================= .. GENERATED FROM PYTHON SOURCE LINES 55-56 From your Python code, create and load a skore :class:`~skore.Project`: .. GENERATED FROM PYTHON SOURCE LINES 58-62 .. code-block:: Python import skore my_project = skore.Project("my_project") .. GENERATED FROM PYTHON SOURCE LINES 72-74 This will create a skore project directory named ``my_project.skore`` in your current working directory. .. GENERATED FROM PYTHON SOURCE LINES 76-77 Store some previous results in the skore project for safe-keeping: .. GENERATED FROM PYTHON SOURCE LINES 79-82 .. code-block:: Python my_project.put("df_cv_report_metrics", df_cv_report_metrics) my_project.put("roc_plot", roc_plot) .. GENERATED FROM PYTHON SOURCE LINES 83-84 Retrieve what was stored: .. GENERATED FROM PYTHON SOURCE LINES 86-89 .. code-block:: Python df_get = my_project.get("df_cv_report_metrics") df_get .. raw:: html
(LogisticRegression, Split #0) (LogisticRegression, Split #1) (LogisticRegression, Split #2) (LogisticRegression, Split #3) (LogisticRegression, Split #4)
Metric Label / Average
Precision 0 0.746546 0.744155 0.740818 0.751271 0.747534
1 0.719169 0.728469 0.723992 0.724621 0.725310
Recall 0 0.702570 0.719372 0.714000 0.709200 0.712400
1 0.761524 0.752725 0.750200 0.765200 0.759400
ROC AUC 0.800497 0.798113 0.798477 0.802839 0.801416
Brier score 0.181144 0.182536 0.182259 0.180057 0.181266


.. GENERATED FROM PYTHON SOURCE LINES 93-96 .. admonition:: What's next? For a more in-depth guide, see our :ref:`example_skore_getting_started` page! .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.685 seconds) .. _sphx_glr_download_auto_examples_getting_started_plot_quick_start.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_quick_start.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_quick_start.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_quick_start.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_